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Abstract

We present a numerical method for computing the eigenstates of a photonic band-
gap material based on the augmented plane-wave method.  The method uses a
functional basis set well suited for structures with spherical and cylindrical elements,
and allows for fast numerical convergence with a small number of expansion terms.
In addition, the method has the ability of dealing with both metallic and dielectric
elements without special treatment.   The method is applied to an array of long
parallel rods with circular cross section.  

The first successfully predicted structure to yield a photonic band-gap (PBG) was that of dielectric
spheres arranged in a diamond lattice.1   Since then, there has been considerable effort to elaborate a
process for the manufacturing of diamond (or diamond-like) structures at submicron wavelengths.  One
such approach consists in etching a large number of hole triplets at off-vertical angles in a slab.2 Another
consists in building an orderly stacking of dielectric rods.3   Yet another consists in etching a series of
horizontal grooves into sequentially-grown layers, and etching vertical holes.4 These structures are
variations of the same diamond structure, aligned along either the (1,1,1), (0,0,1), or (1,1,0) directions,
respectively.  In theoretical treatments, the plane-wave expansion method is commonly used for the
computation of band structures and eigenfunctions.5 However, simple structures such as the ones listed
above are amenable to special theoretical treatment. By properly choosing the functional basis set,
numerical convergence can be reached with a very small number of expansion terms.

In this letter, we present a theoretical method which uses a functional basis set particularly well suited for
structures with spherical and cylindrical elements.  Our computational method, based on the augmented
plane-wave (APW) method of Slater,6 uses Bessel functions as a basis set. The method was originally
developed for electronic systems, and is usually applied to spherically-symmetric systems with scalar
boundary conditions.7,8  When applied to photonic band-gap materials, the APW method with Bessel
functions is most suitable for structures with curved surfaces, and leads to vector boundary conditions.

In addition to yielding fast convergence, the APW method also has the ability of handling different types
of materials.  Conducting elements had been known to require special theoretical treatment, and several
different computational schemes had been used to compute their photonic band structure.9 However, the
APW method can handle metallic elements equally as well as dielectric ones.  In this letter, we focus our
attention on periodic arrays of long parallel dielectric rods and long conducting rods positioned on a
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square lattice.  For these structures, the fields can be decomposed into two orthogonal polarizations, and
the vector boundary conditions can be reduced to scalar conditions.

The Wigner-Seitz unit cell of the periodic array of rods is shown in Figure 1.  In Region I, the basis
functions ψi (i = 1, 2, . . . n) are given by Bessel functions Jm(x) and Ym(x), while in Region II, the basis
functions are plane waves.  Region I is chosen to extend beyond the edges of the cylindrical rod.  By
adjusting its dimension, we can maximize convergence depending on the geometry of the photonic
crystal and the size of the rods.  At the interface between Regions I and II, continuity is maintained by
matching the Bessel functions to the plane waves using Laurent series:

(1) e ik •x  =  im Jm( k x) e im( φ –φ k )   
m = – ∞

∞

∑

While Eq. (1) garanties continuity of the wavefunction, it does not garanty continuity of its derivative.

We convert the electromagnetic wave equation with
periodic boundary conditions into a variational
problem.  The problem reduces to solving a non-linear
eigenvalue equation of the form det(M) = 0. The matrix
elements Mij are given by:
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(4) ∆ij  =  ∫ ψi*   ψj   dΩ

(5) Sij  =  – ψi
*  

∂ψ j,II

∂r
 –  

∂ψ j,I

∂r

 

 
 
 

 

 
 
 ∫

  

ds  

The integration domain Ω in Eqs. (3) and (4)
corresponds to the total area of the unit cell defined by

Regions I and II.  In the first integral, the Hamiltonian operator H is given by -∇2 + [1 - ε(r)] where ε(r)
is the position-dependent dielectric function.  The integral in Eq. (5) is a line integral along the edge of
Region I.

By inserting the basis functions into the above equations, we find the following matrix elements

(6) M
ij
   =

4b 2(k j
2 −λ )δ2

ij  - 2πb
2
 (k

 
i
.k

 
j - λ)

J1(∆kb)

∆kb    • 2πb ∑
m

 
Jm(kib)Jm(kjb)

R’m( λb)

Rm( λb)
  cos(m∆φ)

Figure 1.  Wigner-Seitz unit cell.
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where Rm(x) = bmJm(x) + cmYm(x) and R’m(x) is the derivative of R m(x) with respect to x.  The quantities
∆k and ∆φ are given by |kj - k i| and |φj - φi|, respectively, and the symbol δij represents the Kronecker
delta function.  In the case of lossless isotropic media, the matrix is real and symmetric.

The coefficients bm and cm are chosen to satisfy the boundary conditions within Region I.  The boundary
conditions depend on the rod material and on the field polarization.  In the case where the rods are made
of dielectric material, the electric field is continous at the surface for s polarization (electric field parallel
to the rods) while for p polarization (magnetic field parallel to the rods) the magnetic field is continuous.
In the case of perfectly conducting rods, the field is zero at the surface for s polarization, and the
derivative of the field is zero for p polarization.

We note that the eigenvalues λ in Eq. (6) appear explicitly in a nonlinear manner.  The roots correspond
to frequencies of allowed transmission modes through the structure.  They are computed using a
standard root finding routine for different wavevectors in the periodic lattice.  For each λ = (ω/c)2 the
determinant of matrix M is found as the product of the diagonal elements in matrix U, which in turn is
obtained by LU decomposition of matrix M.  Special care must be taken in this procedure to avoid
skipping over roots, especially when a pole in the determinant falls near a root.

We compute the band
diagram for two
separate cases: (i)
dielectric rods and (ii)
metallic rods.  In the
case of dielectric rods,
we choose a lattice
constant 2b  of 1.0, a
rod radius a of 0.2, and
a dielectric material
with an index of
refraction of 3.4.
Results for s
polarization are shown
in Fig. 2 for a 2x2 and
9x9 determinant.  Also
shown are results
obtained from the
plane-wave method
developed at MIT.10

We find excellent
agreement between the
two methods with as
little as 9 APW basis
functions.

In the case of perfectly conducting rods, we choose a rod radius of 0.187 and a lattice constant of unity.
Results for s polarized waves are shown in Fig. 3 for a 2x2, 4x4, and 9x9 determinant.  These results are
to be compared with those presented in Fig. 6 of Ref. 11 where the Rayleigh scattering method11  is used

Fig. 2.  Band diagram for s polarized waves in an array of dielectric rods of index 3.4
computed with a 2x2 (broken line) and 9x9 (heavy line) determinant.  Also shown is the
band diagram computed from the plane-wave method (light line). The rods have a radius of
0.2 and are located on a square lattice of unit length.  The light line is mostly hidden by
the heavy line.
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with a 49x49 determinant.  Again, excellent agreement can be found with as little as 9 APW basis
functions.  Although the APW is similar to the Rayleigh scattering method in the case of conductors, the
higher rate of convergence of the APW method arises from the continuity conditions imposed at the
boundary between Regions I and II.

An area that has been investigated by others for the purpose of determining photonic band structure
accuracy is the effective long-wavelength dielectric constant (εeff) of the heterogeneous medium.12   I n

our case we evaluated the first eigenvalue for the pure dielectric case of Figure 2 at k = (2π)(0.05,0).  If
we were to follow the prescription of Ref. 12 we would plot the computed value of εeff of versus N

 
and

allow N to go to infinity.  However, it was found that using only a single basis function, the result was
already converged to 5 decimal places.  Any such plot would reflect only the noise in the calculational
procedure, which is in the 6th decimal place.

Finally, the method described above can also be used to compute the band diagram of three-
dimensionally periodic structures.  For example, if additional rods are added in orthogonal or non-
orthogonal directions, it may be possible to compute the band diagram of structures such as the ones
described in Refs. 2 and 3.  Furthermore, since the APW method requires a small number of expansion
terms to reach convergence, it is well suited for the analysis of structures with very large dimensions,
such as supercells containing multiple rods of various types, including defects.

The fast convergence of the APW method is due mostly to the excellent match between the basis set and
the geometrical shape of the structure.  In general, the APW method should prove to be very useful for a

Fig. 3.  Band diagram for s polarized waves in  an array of perfectly conducting rods computed with a 2x2 (broken line),
4x4 (light line), and 9x9 (heavy line) determinant.  The rods have a radius of 0.187 and are located on a square lattice of
length 1.
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wide range of structures seeing that, in many cases, photonic band-gap materials have elements with
cylindrical or spherical surfaces.
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